70 research outputs found

    A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis.

    Get PDF
    Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating the importance of Rv0455c and siderophore secretion during disease. The crystal structure of a Rv0455c homolog reveals a novel protein fold consisting of a helical bundle with a \u27cinch\u27 formed by an essential intramolecular disulfide bond. These findings advance our understanding of the distinct M. tuberculosis siderophore secretion system

    The Structure of the Chemokine Receptor CXCR1 in Phospholipid Bilayers and Interactions with IL-8

    Get PDF
    CXCR1 is one of two high-affinity receptors for the CXC chemokine interleukin-8 (IL-8), a major mediator of immune and inflammatory responses implicated in many disorders, including tumor growth(1-3). IL-8, released in response to inflammatory stimuli, binds to the extracellular side of CXCR1. The ligand-activated intracellular signaling pathways result in neutrophil migration to the site of inflammation(2). CXCR1 is a class-A, rhodopsin-like G-protein-coupled receptor (GPCR), the largest class of integral membrane proteins responsible for cellular signal transduction and targeted as drug receptors(4-7). Despite its importance, its molecular mechanism is poorly understood due to the limited structural information available. Recently, structure determination of GPCRs has advanced by tailoring the receptors with stabilizing mutations, insertion of the protein T4 lysozyme and truncations of their amino acid sequences(8), as well as addition of stabilizing antibodies and small molecules(9) that facilitate crystallization in cubic phase monoolein mixtures(10). The intracellular loops of GPCRs are critical for G-protein interactions(11) and activation of CXCR1 involves both N-terminal residues and extracellular loops(2,12,13). Our previous NMR studies indicate that IL-8 binding to the N-terminal residues is mediated by the membrane, underscoring the importance of the phospholipid bilayer for physiological activity(14). Here we report the three-dimensional structure of human CXCR1 determined by NMR spectroscopy. The receptor is in liquid crystalline phospholipid bilayers, without modification of its amino acid sequence and under physiological conditions. Features important for intracellular G-protein activation and signal transduction are revealed

    NMR Structural Studies of Membrane Proteins in Lipid Micelles and Lipid Bilayers

    Get PDF

    Orientation of the Escherichia coli

    No full text

    NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes

    Get PDF
    AbstractThe β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins
    • …
    corecore